4.6 Article

Micromechanical modelling and simulation of chopped random fiber reinforced polymer composites with progressive debonding damage

Journal

INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
Volume 45, Issue 20, Pages 5220-5236

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijsolstr.2008.05.013

Keywords

polymer fiber composites; micromechanical modelling; elastic-damage behaviour; fiber-matrix debonding; volumetric strain; finite element analysis; videoextensometry

Categories

Ask authors/readers for more resources

The aim of the present paper is to provide a quantitative prediction of the elastic-damage behaviour of randomly oriented fiber polymer composites. A constitutive model based on micromechanical considerations is presented. The nucleation and growth of voids induced by progressive fiber debonding is combined with the constitutive relationship. Failure resulting of excessive damage accumulation is captured by a critical void volume criterion and a vanishing element technique. Experimentally, damage accumulation in random glass fiber-polyester composites was monitored by a videoextensometry technique able to control the local strain rate. Good agreement of model predictions with experimental data is pointed out. The model was implemented into a finite element program and numerical applications on composite structures (a tensile specimen and a plate containing a central hole) are presented to illustrate the capability of the approach. Digital image correlation method was also used to measure the full-field strain in a notched specimen under tensile loading. The simulated results compared favourably with those obtained from experiments. (C) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available