4.6 Article

Molecular dynamics simulations of ion-irradiation induced deflection of 2D graphene films

Journal

INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
Volume 45, Issue 13, Pages 3908-3917

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijsolstr.2007.12.025

Keywords

molecular dynamics simulations; ion-beam machining; deflection; interstitials; vacancies

Categories

Funding

  1. Div Of Civil, Mechanical, & Manufact Inn
  2. Directorate For Engineering [0826841] Funding Source: National Science Foundation
  3. Office Of The Director
  4. EPSCoR [0918970] Funding Source: National Science Foundation

Ask authors/readers for more resources

Ion-irradiation induced surface stress generation and the resulting deflection of 2D cantilever graphene films is studied using molecular dynamics (MD) simulations. The simulation results show that the free-end deflection is strongly dependent on the kinetic energy of the incident ions. At low incident energies (<< 10 eV), the graphene film bends towards the irradiated side (upward deflection in our simulations); a transition from bending towards the irradiated side (upward deflection) to bending away from the irradiated side (downward deflection) occurs when the incident energy is similar to 10 eV; the downward deflection peaks at similar to 50 eV. Further increases of the incident energy cause the magnitude of downward deflection to decrease. The evolution of free-end deflection with respect to the number of incidences is also dependent on the incident energy. The dependence of the deflection behavior of the graphene films on the incident energy revealed by our atomistic simulations suggests the generation of intrinsic stress of different levels in the growing films. Such behavior may be attributed to competing mechanisms of production and annihilation of interstitial- and vacancy-like defects in the growing film. Understanding the dependence of thin film deflection on the incident energy provides guidelines for controlling thin film shapes at the nanometer scale using ion-beam machining. Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available