4.7 Article

Cooperative control of multiple surface vessels in the presence of ocean currents and parametric model uncertainty

Journal

INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL
Volume 20, Issue 14, Pages 1549-1565

Publisher

WILEY
DOI: 10.1002/rnc.1526

Keywords

cooperative motion control; path-following; autonomous surface vehicles; graph theory; nonlinear control; adaptive control

Funding

  1. FREEsubNET Research Training Network [MRTN-CT-2006-036186]
  2. GREX/CEC-IST [035223]
  3. Co3AUVs/CEC [IST-231378]
  4. FCT-ISR/IST
  5. FCT [SFRH/BD/30605/2006]
  6. Fundação para a Ciência e a Tecnologia [SFRH/BD/30605/2006] Funding Source: FCT

Ask authors/readers for more resources

This paper addresses the problem of cooperative path-following of multiple autonomous vehicles. Stated briefly, the problem consists of steering a group of vehicles along specified paths while keeping a desired spatial formation. For a given class of autonomous surface vessels, it is shown how Lyapunov-based techniques and graph theory can be brought together to design a decentralized control structure, where the vehicle dynamics and the constraints imposed by the topology of the inter-vehicle communication network are explicitly taken into account. To achieve path-following for each vehicle, a nonlinear adaptive controller is designed that yields convergence of the trajectories of the closed-loop system to the path in the presence of constant unknown ocean currents and parametric model uncertainty. The controller derived implicitly compensates for the effect of the ocean current without the need for direct measurements of its velocity. Vehicle cooperation is achieved by adjusting the speed of each vehicle along its path according to information exchanged on the positions of a subset of the other vehicles, as determined by the communication topology adopted. Global stability and convergence of the closed-loop system are guaranteed. Illustrative examples are presented and discussed. Copyright (C) 2009 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available