4.7 Article

H∞ control for discrete-time Markovian jump linear systems with partly unknown transition probabilities

Journal

Publisher

WILEY-BLACKWELL
DOI: 10.1002/rnc.1355

Keywords

Markovian jump linear systems; H-infinity control; partly unknown transition probabilities; linear matrix inequality (LMI)

Ask authors/readers for more resources

In this paper, the problem of H-infinity control for a class of discrete-time Markovian jump linear system with partly unknown transition probabilities is investigated. The class of systems under consideration is more general, which covers the systems with completely known and completely unknown transition probabilities as two special cases. Moreover, in contrast to the uncertain transition probabilities studied recently, the concept of partly unknown transition probabilities proposed in this paper does not require any knowledge of the unknown elements. The H,,, controllers to be designed include state feedback and dynamic output feedback, since the latter covers the static one. The sufficient conditions for the existence of the desired controllers are derived within the matrix inequalities framework, and a cone complementary linearization algorithm is exploited to solve the latent equation constraints in the output-feedback control case. Two numerical examples are provided to show the validness and potential of the developed theoretical results. Copyright (C) 2008 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available