4.7 Article Proceedings Paper

Information-theoretic compression of pose graphs for laser-based SLAM

Journal

INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH
Volume 31, Issue 11, Pages 1219-1230

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0278364912455072

Keywords

SLAM; long-term; pose graph; compression; mutual information

Categories

Ask authors/readers for more resources

In graph-based simultaneous localization and mapping (SLAM), the pose graph grows over time as the robot gathers information about the environment. An ever growing pose graph, however, prevents long-term mapping with mobile robots. In this paper, we address the problem of efficient information-theoretic compression of pose graphs. Our approach estimates the mutual information between the laser measurements and the map to discard the measurements that are expected to provide only a small amount of information. Our method subsequently marginalizes out the nodes from the pose graph that correspond to the discarded laser measurements. To maintain a sparse pose graph that allows for efficient map optimization, our approach applies an approximate marginalization technique that is based on Chow-Liu trees. Our contributions allow the robot to effectively restrict the size of the pose graph. Alternatively, the robot is able to maintain a pose graph that does not grow unless the robot explores previously unobserved parts of the environment. Real-world experiments demonstrate that our approach to pose graph compression is well suited for long-term mobile robot mapping.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available