4.7 Article Proceedings Paper

Electro-osmotic propulsion of helical nanobelt swimmers

Journal

INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH
Volume 30, Issue 7, Pages 806-819

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0278364911407231

Keywords

Biologically inspired robots; biomimetics; human-centered and life-like robotics; mechanics; design; and control; micro/nanorobots

Categories

Ask authors/readers for more resources

Micro and nanoscale mobile agents capable of self-propulsion in low Reynolds number fluids would have a great technological impact in many fields. Few known mechanisms are able to propel such devices. Here we describe helical nanobelt (HNB) swimmers actuated by an electric field-generated electro-osmotic force. These HNB swimmers are designed with a head and a tail, similar to natural micro-organisms such as bacteria and their flagella. We show that these electro-osmotic propulsion of HNB swimmers achieve speeds (24 body lengths per second), force (1.3 nN), and pressure (375.5 Pa) above those demonstrated by other artificial swimmers based on physical energy conversion. Although nature's bacteria are still more dynamic, this paper reports that the demonstrated electro-osmotic HNB microswimmers made a big step toward getting closer to their performances. Moreover, an unusual swimming behavior with discontinuous pumping propulsion, similar to jellyfish, was revealed at or above the speculated marginal limit of linear propulsion. These electro-osmosis propelled HNB swimmers might be used as biomedical carriers, wireless manipulators, and as local probes for rheological measurements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available