4.6 Article

A new Landsat 8 cloud discrimination algorithm using thresholding tests

Journal

INTERNATIONAL JOURNAL OF REMOTE SENSING
Volume 39, Issue 23, Pages 9113-9133

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/01431161.2018.1506183

Keywords

-

Ask authors/readers for more resources

In this work, we propose a Cloud Discrimination Algorithm for Landsat 8 (CDAL8) to improve a high-frequency automatic land change detection system developed at the National Institute of Advanced Industrial Science and Technology (AIST), Japan for large-scale satellite image analysis. Although the land change detection system can process several kinds of satellite remote sensing data, improvements are needed to enable practical applications using Landsat 8 data. Cloud discrimination is a necessary pre-processing step for land cover change detection. Currently, most of the prediction errors on land change detection are caused by the false cloud discrimination results as a pre-processing step. Therefore, we introduce an improved cloud discrimination algorithm (CDAL8) in this study to improve the overall performance of our land change detection system. The algorithm was developed based on a Moderate Resolution Imaging Spectroradiometer (MODIS) cloud mask algorithm and Cloud and Aerosol Unbiased Decision Intellectual Algorithm (CLAUDIA). CDAL8 is distinct in that it switches judgment tests and their thresholds using a threshold brightness temperature and uses separate features in cloud judgment and clear-sky judgment. To evaluate the accuracy of the proposed algorithm, we compared it with the Automated Cloud-Cover Assessment algorithm (ACCA) and Function of Mask (Fmask) version 3.3 using US Geological Survey Landsat 8 cloud cover assessment validation data, which contain 96 cloud masks. Our proposed cloud discrimination algorithm (CDAL8) have promising results with an accuracy of 88.1%, which was greater than that of the ACCA (82.5%) and Fmask (84.6%). Furthermore, we also confirmed that the average accuracy of CDAL8 was approximately 91.2% when low solar elevation scenes were removed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available