4.6 Article

Satellite remote sensing of fine particulate matter (PM2.5) air quality over Beijing using MODIS

Journal

INTERNATIONAL JOURNAL OF REMOTE SENSING
Volume 35, Issue 17, Pages 6522-6544

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/01431161.2014.958245

Keywords

-

Funding

  1. China Scholarship Council [201206270025, 201308420279]
  2. Fundamental Research Funds for the Central Universities [201120502020002]
  3. NASA's radiation sciences and Atmospheric Chemistry Modeling and Analysis Program (ACMAP)

Ask authors/readers for more resources

Fine particulate matter (aerodynamic diameters of less than 2.5 mu m, PM2.5) air pollution has become one of the major environmental challenges, causing severe environmental issues in urban visibility, climate, and public health. In this study, ground-level PM2.5 concentrations, air-quality categories (AQCs), and health risk categories (HRCs) over Beijing, China, have been estimated based on mid-visible column aerosol optical depth (AOD) measurements extracted from Moderate Resolution Imaging Spectroradiometer (MODIS) data on board both Terra and Aqua satellites. Our results indicate that the MODIS AOD retrievals at 550 nm (AOD(550)) match hourly aerosol robotic network (AERONET) measurements with correlation coefficients (r) of 0.950 for Terra and 0.895 for Aqua. The relationship between ground-level PM2.5 and MODIS AOD(550) from March 2012 to February 2013 showed correlation coefficients of 0.69, 0.60, and 0.73 for spring, summer, and autumn, respectively. The atmospheric boundary layer height and relative humidity (RH) adjustments improved the AOD-PM2.5 relationship in summer months. The estimates of daily average PM2.5 from satellite measurements were used to predict both AQCs and HRCs, which are well matched with observations. Satellite remote sensing of atmospheric aerosols continues to show great potential for estimating ground-level PM2.5 concentrations and can be further used to monitor the atmospheric environment in China.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available