3.9 Article

Evidence That Up-Regulation of MicroRNA-29 Contributes to Postnatal Body Growth Deceleration

Journal

MOLECULAR ENDOCRINOLOGY
Volume 29, Issue 6, Pages 921-932

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1210/me.2015-1047

Keywords

-

Funding

  1. Intramural Research Program of Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
  2. Swedish Research Council [2012-99X-221998-01-3, K2015-54X-22736-01-4]
  3. Karolinska Institutet
  4. Swedish Society of Medicine
  5. Stiftelsen Frimurare Barnhuset Stockholm
  6. Sallskapet Barnavard
  7. HKH Kronprinsessan Lovisas Forening for Barnasjukvard

Ask authors/readers for more resources

Body growth is rapid in infancy but subsequently slows and eventually ceases due to a progressive decline in cell proliferation that occurs simultaneously in multiple organs. We previously showed that this decline in proliferation is driven in part by postnatal down-regulation of a large set of growth-promoting genes in multiple organs. We hypothesized that this growth-limiting genetic program is orchestrated by microRNAs (miRNAs). Bioinformatic analysis identified target sequences of the miR-29 family of miRNAs to be overrepresented in age-down-regulated genes. Concomitantly, expression microarray analysis in mouse kidney and lung showed that all members of the miR-29 family, miR-29a, -b, and -c, were strongly up-regulated from 1 to 6 weeks of age. Real-time PCR confirmed that miR-29a, -b, and -c were up-regulated with age in liver, kidney, lung, and heart, and their expression levels were higher in hepatocytes isolated from 5-week-old mice than in hepatocytes from embryonic mouse liver at embryonic day 16.5. We next focused on 3 predicted miR-29 target genes (Igf1, Imp1, and Mest), all of which are growth-promoting. A 3'-untranslated region containing the predicted target sequences from each gene was placed individually in a luciferase reporter construct. Transfection of miR-29 mimics suppressed luciferase gene activity for all 3 genes, and this suppression was diminished by mutating the target sequences, suggesting that these genes are indeed regulated by miR-29. Taken together, the findings suggest that up-regulation of miR-29 during juvenile life drives the down-regulation of multiple growth-promoting genes, thus contributing to physiological slowing and eventual cessation of body growth.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available