4.6 Article

Time-series analysis of NDVI from AVHRR data over the Hindu Kush-Himalayan region for the period 1982-2006

Journal

INTERNATIONAL JOURNAL OF REMOTE SENSING
Volume 33, Issue 21, Pages 6710-6721

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/01431161.2012.692836

Keywords

-

Funding

  1. NASA [NNX10AO65H]
  2. NASA [126808, NNX10AO65H] Funding Source: Federal RePORTER

Ask authors/readers for more resources

The Hindu Kush-Himalayan (HKH) region with its surrounding mountains in central Asia is a region that has been warming at an alarming rate and is sensitive to climate change due to its heterogeneous terrain and high altitude. In a region where research is limited due to the paucity of field-based biophysical observations, analysis of remotely sensed data such as the normalized difference vegetation index (NDVI) can provide invaluable information on spatio-temporal patterns in linkages among land use, climate and vegetative phenological cycles, and trends in vegetative cover. In this study, NDVI data with 8 km spatial resolution for each 15 day composite period from 1982 to 2006 were analysed using a seasonal trend analysis technique, where the first step determines the annual mean and seasonal NDVI patterns across the HKH region. The second step analyses the non-parametric trends in magnitude and timing of the annual mean and seasonal NDVI cycle. The seasonal vegetation cycles were compared for the first and last ten years of the time series and were also analysed across areas undergoing significant change. Results indicated an overall greening trend in NDVI magnitude in most areas, particularly over open shrubland, grassland and cropland. Trends in the annual seasonal timing of NDVI indicated an earlier green-up for most parts of this region. Results also confirmed deforestation trends observed in a few states in northeastern India and Myanmar (Shan state) within the HKH region.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available