4.6 Article

Method of estimating solar UV radiation in high-latitude locations based on satellite ozone retrieval with an improved algorithm

Journal

INTERNATIONAL JOURNAL OF REMOTE SENSING
Volume 32, Issue 11, Pages 3165-3177

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/01431161.2010.541513

Keywords

-

Ask authors/readers for more resources

The effects of the cloudiness and satellite-based ozone measurements on erythemally effective ultraviolet (EUV) radiation were examined using a non-linear regression model. Instead of the widely used ozone transmissivity exponential function, we proposed a new approach based on a quantum transmission model using hyperbolic attenuation of the EUV radiation. The radiation data were collected at the Czech Johann Gregor Mendel Station, James Ross Island, Antarctica (63 degrees 48' S, 57 degrees 53' W), between 14 March 2007 and 3 March 2009. The total ozone content and effective surface reflectivity at 360 nm were obtained from the Ozone Monitoring Instrument on board the EOS-Aura spacecraft for the geographical coordinates of the J.G. Mendel Station. The model predicted 98.6% variability of the EUV radiation. The residuals between the measured and predicted EUV radiation intensities were evaluated separately for the ranges of solar elevation angle, total ozone content and surface reflectivity. The results of this study were compared to previous findings where the influence of ground-based and satellite-based ozone measurements and model usefulness was discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available