4.6 Article

Super-resolution land-cover mapping using multiple sub-pixel shifted remotely sensed images

Journal

INTERNATIONAL JOURNAL OF REMOTE SENSING
Volume 31, Issue 19, Pages 5023-5040

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/01431160903252350

Keywords

-

Funding

  1. National Natural Science Foundation of China [40801186, 40801045]
  2. Wuhan Youth Chenguang Project [200950431218]

Ask authors/readers for more resources

Super-resolution land-cover mapping is a promising technology for prediction of the spatial distribution of each land-cover class at the sub-pixel scale. This distribution is often determined based on the principle of spatial dependence and from land-cover fraction images derived with soft classification technology. However, the resulting super-resolution land-cover maps often have uncertainty as no information about sub-pixel land-cover patterns within the low-resolution pixels is used in the model. Accuracy can be improved by incorporating supplemental datasets to provide more land-cover information at the sub-pixel scale; but the effectiveness of this is limited by the availability and quality of these additional datasets. In this paper, a novel super-resolution land-cover mapping technology is proposed, which uses multiple sub-pixel shifted remotely sensed images taken by observation satellites. These satellites take images over the same area once every several days, but the images are not identical because of slight orbit translations. Low-resolution pixels in these remotely sensed images therefore contain different land-cover fractions that can provide useful information for super-resolution land-cover mapping. We have constructed a Hopfield Neural Network (HNN) model to solve it. Maximum spatial dependence is the goal of the proposed model, and the fraction maps of all images are constraints added to the energy function of HNN. The model was applied to synthetic artificial images as well as to a real degraded QuickBird image. The output maps derived from different numbers of images at different zoom factors were compared visually and quantitatively to the super-resolution map generated from a single image. The resulting land-cover maps with multiple remotely sensed images were more accurate than was the single image map. The use of multiple remotely sensed images is therefore a promising method for decreasing the uncertainty of super-resolution land-cover mapping. Moreover, remotely sensed images with similar spatial resolution from different satellite platforms can be used together, allowing a fusion of information obtained from remotely sensed imagery.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available