4.7 Article

A genetic perspective on rapid evolution in cane toads (Rhinella marina)

Journal

MOLECULAR ECOLOGY
Volume 24, Issue 9, Pages 2264-2276

Publisher

WILEY
DOI: 10.1111/mec.13184

Keywords

invasive species; phenotypic change; rapid evolution; transcriptomics

Funding

  1. Australian Research Council
  2. Deakin University

Ask authors/readers for more resources

The process of biological invasion exposes a species to novel pressures, in terms of both the environments it encounters and the evolutionary consequences of range expansion. Several invaders have been shown to exhibit rapid evolutionary changes in response to those pressures, thus providing robust opportunities to clarify the processes at work during rapid phenotypic transitions. The accelerating pace of invasion of cane toads (Rhinella marina) in tropical Australia during its 80-year history has been well characterized at the phenotypic level, including common-garden experiments that demonstrate heritability of several dispersal-relevant traits. Individuals from the invasion front (and their progeny) show distinctive changes in morphology, physiology and behaviour that, in combination, result in far more rapid dispersal than is true of conspecifics from long-colonized areas. The extensive body of work on cane toad ecology enables us to place into context studies of the genetic basis of these traits. Our analyses of differential gene expression from toads from both ends of this invasion-history transect reveal substantial upregulation of many genes, notably those involved in metabolism and cellular repair. Clearly, then, the dramatically rapid phenotypic evolution of cane toads in Australia has been accompanied by substantial shifts in gene expression, suggesting that this system is well suited to investigating the genetic underpinnings of invasiveness.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available