4.5 Article

Energy and exergy analysis of single effect and series flow double effect water-lithium bromide absorption refrigeration systems

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ijrefrig.2009.01.017

Keywords

Absorption system; Water-lithium bromide; Modelling; Simulation; COP; Exergy; Energy efficiency

Ask authors/readers for more resources

In this paper, the energy and exergy analysis of single effect and series flow double effect water-lithium bromide absorption systems is presented. A computational model has been developed for the parametric investigation of these systems. Newly developed computationally efficient property equations of water-lithium bromide solution have been used in the computer code. The analysis involves the determination of effects of generator, absorber and evaporator temperatures on the energetic and exergetic performance of these systems. The effects of pressure drop between evaporator and absorber, and effectiveness of heat exchangers are also investigated. The performance parameters computed are coefficient of performance, exergy destruction, efficiency defects and exergetic efficiency. The results indicate that coefficient of performance of the single effect system lies in range of 0.6-0.75 and the corresponding value of coefficient of performance for the series flow double effect system lies in the range of 1-1.28. The effect of parameters such as temperature difference between heat source and generator and evaporator and cold room have also been investigated. Irreversibility is highest in the absorber in both systems when compared to other system components. (C) 2009 Elsevier Ltd and IIR. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available