4.5 Article

Experimental validation of a prototype ejector designed to reduce throttling losses encountered in transcritical R744 system operation

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ijrefrig.2007.07.013

Keywords

refrigeration system; compression system; carbon dioxide; transcritical cycle; expansion; ejector; simulation; experiment; performance

Ask authors/readers for more resources

This study presents experimental results obtained from a transcritical R744 system using a refrigerant ejector. The results were compared to that of a conventional system with an expansion valve. For the test conditions considered, the cooling capacity and COP simultaneously improved by up to 8% and 7%, respectively. Experiments were analyzed to quantitatively assess the effects on system performance as a result of changes in basic ejector dimensions such as motive nozzle and diffuser sizing. Small angles of 5 degrees yielded best results for the static pressure recovery of the high-speed two-phase flow entering the diffuser. Experiments confirmed that like in a conventional transcritical R744 system with expansion valve, the high-side pressure control integrated into the ejector could be used to maximize the system performance. Numerical simulation results helped identifying this basic trend. Due to difficulties in the ejector throat pressure measurements, a more practical performance metric was introduced in order to quantify overall ejector efficiencies. According to this definition, the prototype ejector was able to recover up to 14.5% of the throttling losses. (C) 2007 Elsevier Ltd and IIR. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available