4.4 Article

Quinone-based switches for candidate building blocks of molecular junctions with QTAIM and the stress tensor

Journal

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
Volume 118, Issue 16, Pages -

Publisher

WILEY
DOI: 10.1002/qua.25676

Keywords

QTAIM; quinone-based switche; stress tensor; stress tensor trajectory

Funding

  1. National Natural Science Foundation of China [21673071]
  2. One Hundred Talents Foundation of Hunan Province
  3. Science and Technology Innovative Research
  4. Higher Educational Institutions of Hunan Province
  5. Royal Society
  6. aid program for the Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province

Ask authors/readers for more resources

The current work investigates candidate building blocks based on molecular junctions from hydrogen transfer tautomerization in the benzoquinone-like core of an azophenine molecule with QTAIM and the recently introduced stress tensor trajectory analysis. We find that in particular the stress tensor trajectories are well suited to describe the mechanism of the switching process. The effects of an Fe-dopant atom coordinated to the quinone ring, as well as F and Cl substitution of different ring-hydrogens, are investigated and the new QTAIM and stress tensor analysis is used to draw conclusions on the effectiveness of such molecules as molecular switches in nanosized electronic circuits. We find that the coordinated Fe-dopant greatly improves the switching properties, both in terms of the tautomerization barrier that has to be crossed in the switching process and the expected conductance behavior, while the effects of hydrogen substitution are more subtle. The absence of the Fe-dopant atom led to impaired functioning of the switch OFF mechanism as well as coinciding with the formation of closed-shell HH bond critical points that indicated a strained or electron deficient environment. Our analysis demonstrates promise for future use in design of molecular electronic devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available