4.4 Article Proceedings Paper

DFT Studies of Homogeneous Catalysis in the Gas Phase: Dehydration Kinetics of Several Tertiary Alcohols With Hydrogen Chloride

Journal

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
Volume 112, Issue 1, Pages 78-88

Publisher

WILEY
DOI: 10.1002/qua.23145

Keywords

tertiary alcohols; gas-phase kinetics; DFT calculations; mechanism

Ask authors/readers for more resources

The mechanisms for the acid-catalyzed gas-phase dehydration of the tertiary alcohols 2-methyl-2-propanol, 2-methyl-2-butanol, and 2-methyl-2-pentanol were examined at B3LYP/6-31G(d), B3LYP/6-31G(d,p), B3LYP/6-31G(2d,p), B3LYP/6-31G(2d,2p), B3PW1/6-31G(d), B3PW1/6-31G(d,p), B3PW1/6-31G(2d,p), B3PW1/6-31G(2d,2p), MPW91PW91/6-31G(d), MPW91PW91/6-31G(d,p), MPW91PW91/6-31G(2d,p), and MPW91PW91/6-31G(2d,2p) levels of theory. Calculation results suggest that the dehydration processes catalyzed by hydrogen chloride to give the corresponding olefin and water occur with the formation of Van der Waals complexes between the alcohol and hydrogen chloride. The transition states are six-membered cyclic structures involving one molecule of HCl and one of the alcohol. These reactions appear to be molecular in nature. Analysis of the progress along the reaction coordinate, in terms of bond orders, NBO charges, and geometrical parameters suggest these reactions to be moderately polar and nonsynchronous and are dominated by the breaking of the H-Cl bond, together with an important cleavage of C-O bond in the transition state. (C) 2010 Wiley Periodicals, Inc. Int J Quantum Chem 112: 78-88, 2012

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available