4.4 Article

A DFT Study of Determination of the Reactive Sites of the Acetylcholine and Its Agonists: In the Gas Phase and Dielectric Medium

Journal

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
Volume 111, Issue 10, Pages 2464-2475

Publisher

WILEY
DOI: 10.1002/qua.22512

Keywords

acetylcholine and its agonists; DFT; atomic charges; chemical reactivity; HOMO-LUMO

Funding

  1. Cumhuriyet University [F-222]

Ask authors/readers for more resources

The reactive behavior of acetylcholine and its agonist molecules have been investigated using B3LYP hybrid density functional method at the 6-311++G** basis set level, in the gas phase and aqueous phase. The calculations have been performed to obtain optimized geometries, relative reactivities, net atomic charges, HOMO, and LUMO energies. The solvent effect has been analyzed by using the continuum model (IPCM) and, the obtained results have shown that the all molecules have been stabilized more by solvent dielectric constant. For Ach and its analogues, it has been very well known that esteratic site and quaternary ammonium group which have reflected the difference in biological activity have been the two of the most important active site for interactions between molecule and its receptor. The structures of these analogues have provided an essential foundation for subsequent structure-activity analysis of ligand binding at acetylcholine receptors, neuronal uptake inhibitors and transporters. Molecular modeling predictions will be important initial steps toward the development of novel pharmaceuticals in the fight acetylcholine-related neurological disorders. This work is therefore expected to facilitate the design and development of new biologically active Ach analogues to treat Ach-related neurological disorders and, specially is used to qualitative understanding of the reactivity and related properties and, so on can be used to a preselection of new ligands which at the moment is taken essentially from empirical knowledge. (C) 2010 Wiley Periodicals, Inc. Int J Quantum Chem 111: 2464-2475, 2011

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available