4.6 Article

Incorporating uncertainty into a supplier selection problem

Journal

INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS
Volume 134, Issue 2, Pages 344-356

Publisher

ELSEVIER
DOI: 10.1016/j.ijpe.2009.11.007

Keywords

Robust supplier selection; Plan for uncertainty; Stochastic programming; Chance-constraint programming; Multi-parametric programming; Tradeoffs between risk and cost

Ask authors/readers for more resources

Supplier selection is an important strategic supply chain design decision. Incorporating uncertainty of demand and supplier capacity into the optimization model results in a robust selection of suppliers. A two-stage stochastic programming (SP) model and a chance-constrained programming (CCP) model are developed to determine a minimal set of suppliers and optimal order quantities with consideration of business volume discounts. Both models include several objectives and strive to balance a small number of suppliers with the risk of not being able to meet demand. The SP model is scenario-based and uses penalty coefficients whereas the CCP model assumes a probability distribution and constrains the probability of not meeting demand. Both formulations improve on a deterministic mixed integer linear program and give the decision maker a more complete picture of tradeoffs between cost, system reliability and other factors. We present Pareto-optimal solutions for a sample problem to demonstrate the benefits of the SP and CCP models. In order to describe the tradeoffs between costs and risks in an analytical form, we use multi-parametric programming techniques to more completely analyze the alternative Pareto-optimal supplier selection solutions in the CCP model. This analysis gives insights into the robustness of the solutions with respect to number of suppliers, costs and probability of not meeting demand. Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available