4.7 Article

Size effects on void growth in single crystals with distributed voids

Journal

INTERNATIONAL JOURNAL OF PLASTICITY
Volume 24, Issue 4, Pages 688-701

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijplas.2007.07.015

Keywords

void growth; strain gradient plasticity; single crystal; size effects

Ask authors/readers for more resources

The effect of void size on void growth in single crystals with uniformly distributed cylindrical voids is studied numerically using a finite deformation strain gradient crystal plasticity theory with an intrinsic length parameter. A plane strain cell model is analyzed for a single crystal with three in-plane slip systems. It is observed that small voids allow much larger overall stress levels than larger voids for all the stress triaxialities considered. The amount of void growth is found to be suppressed for smaller voids at low stress triaxialities. Significant differences are observed in the distribution of slips and on the shape of the deformed voids for different void sizes. Furthermore, the orientation of the crystalline lattice is found to have a pronounced effect on the results, especially for the smaller void sizes. (c) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available