4.7 Article

Rotation of axes for anisotropic metal in FEM simulations

Journal

INTERNATIONAL JOURNAL OF PLASTICITY
Volume 24, Issue 3, Pages 397-427

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijplas.2007.03.015

Keywords

B. anisotropic material; B. constitutive behaviour; B. crystal plasticity; B. finite strain; C. finite elements

Ask authors/readers for more resources

For the FE simulations relying on elasto-plastic models based on anisotropic yield locus description, it is important for the simulation accuracy to follow a Cartesian reference frame, where the yield locus is expressed. The classical formulations like the Hill 1948 model keep a constant shape of the yield locus when other texture based yield loci regularly update their shape. However in all these cases, the rotation of the Cartesian reference frame must be known. For simple shear tests performed on steel sheets, experimental displacements provide the actual updated position of initial orthogonal grids. The initial and final texture measurements give information on the average crystals rotation. For Hill constitutive law and texture based models, this paper compares the experimental results with different ways to follow the Cartesian reference frame: the co-rotational method, an original method based on the constant symmetric local velocity gradient and the Mandel spin computed by four different methods. (C) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available