4.7 Article

In vivo pharmacokinetics and biodistribution of resveratrol-loaded solid lipid nanoparticles for brain delivery

Journal

INTERNATIONAL JOURNAL OF PHARMACEUTICS
Volume 474, Issue 1-2, Pages 6-13

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ijpharm.2014.08.003

Keywords

Resveratrol; Solid lipid nanoparticles (SLN); Brain targeting; Brain cancer; Cytotoxicity

Funding

  1. All India Council for Technical Education (AICTE), New Delhi, India

Ask authors/readers for more resources

Resveratrol is a potent anticancer. However, because of its low half-life (<0.25 h) the molecule is difficult to achieve the therapeutic concentration at the site of action. The aim of this work was to check the brain targeting ability of glyceryl behenate-based solid lipid nanoparticles (SLN) for resveratrol. SLN were prepared by solvent evaporation technique employing high speed homogenization followed by ultrasonication. SLN were designed at varying drug-lipid ratios (1:5, 1:9, 1:10, 1:11, 1:12 and 1:15) using Tween 80 or a combination of Tween 80 and polyvinyl alcohol (PVA) as surfactants. The mean particle size and zeta potential of the optimized formulation (drug-lipid ratio of 1:10) were 248.30 + 3.80 nm and -25.49 +/- 0.49 mV, respectively. The particle size and the encapsulation efficiency (EE) increased when varying the drug-lipid ratio from 1:5 to 1:15. Scanning electron microscopic (SEM) analysis showed that SLN were spherical in shape and had a smooth surface. The X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analyses revealed that the matrix of drug-loaded SLN was in disordered crystalline phase. The in vitro release study in phosphate buffer pH 7.4 followed a sustained release pattern. The drug release data was found to fit best into Higuchi kinetic model suggesting the diffusion controlled mechanism of drug release. The cytotoxicity assay (MAT) showed that SLN were equally effective (P < 0.5) as free resveratrol, as an anti-tumor agent. The in vivo biodistribution study using Wistar rats demonstrated that SLN could significantly (P < 0.001) increase the brain concentration of resveratrol (17.28 +/- 0.6344 mu g/g) as compared to free resveratrol (3.45 +/- 0.3961 mu g/g). The results showed that our resveratrol-loaded SLN serve as promising therapeutic systems to treat neoplastic diseases located in the brain tissue. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available