4.7 Article

Baicalein loaded in tocol nanostructured lipid carriers (tocol NLCs) for enhanced stability and brain targeting

Journal

INTERNATIONAL JOURNAL OF PHARMACEUTICS
Volume 423, Issue 2, Pages 461-470

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ijpharm.2011.12.009

Keywords

Nanostructured lipid carriers; Baicalein; Vitamin E; Gelucire; Brain targeting

Ask authors/readers for more resources

The objective of the present work was to investigate the specific brain targeting of baicalein by intravenous injection after incorporation into nanostructured lipid carriers (NLCs). The NLC system, composed of tripalmitin, Gelucires, vitamin E, phospholipids, and poloxamer 188 (referred to as tocol NLCs), was characterized in terms of its physicochemical properties, differential scanning calorimetry (DSC), stability, in vivo pharmacokinetics, and brain distribution. The lipid nanoparticles were spherical with an average size of similar to 100 nm. The zeta potential of the nanoparticles was about -50 mV. DSC studies suggested that the majority of the inner cores of tocol NLCs had a slightly disordered crystal arrangement. The nanoparticulate dispersions demonstrated good physical stability during storage for 6 days. The incorporation of vitamin E in the formulations greatly reinforced baicalein's stability. The aqueous control and tocol NLCs were intravenously administered to rats. The plasma level of baicalein in NLCs was much higher and the half-life much longer than those in the free control. In the experiment on the brain distribution, NLCs respectively revealed 7.5- and 4.7-fold higher baicalein accumulations compared to the aqueous solution in the cerebral cortex and brain stem. Greater baicalein accumulations with NLCs were also detected in the hippocampus, striatum, thalamus, and olfactory tract. A 2-3-fold increase in baicalein amounts were achieved in these regions. Tocol NLCs improved baicalein's stability and the ability of baicalein to penetrate the brain; thus, this is a promising drug-targeting system for the treatment of central nervous system disorders. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available