4.7 Article

Skin penetration and deposition of carboxyfluorescein and temoporfin from different lipid vesicular systems: In vitro study with finite and infinite dosage application

Journal

INTERNATIONAL JOURNAL OF PHARMACEUTICS
Volume 408, Issue 1-2, Pages 223-234

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ijpharm.2011.02.006

Keywords

Lipid vesicular systems; In vitro skin penetration and deposition; Skin distribution; Finite dose; Infinite dose

Ask authors/readers for more resources

The aim of the present research is to evaluate the influence of different lipid vesicular systems as well as the effect of application mode on skin penetration and deposition behaviors of carboxyfluorescein (hydrophilic model drug) and temoporfin (lipophilic model drug). All of the lipid vesicular systems, including conventional liposomes, invasomes and ethosomes, were prepared by film hydration method and characterized for particle size distribution, zeta-potential, vesicular shape and surface morphology, in vitro human skin penetration and skin deposition. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) defined that all of lipid vesicles had almost spherical structures with low poly-dispersity (PDI < 0.2) and nanometric size range (z-average no more than 150 nm). In addition, all lipid vesicular systems exhibited a negative zeta potential. In vitro skin penetration and deposition experiments demonstrated that, in the case of CF with finite dose application (10 mu l/cm(2)) and infinite dose application (160 mu l/cm(2)), lipid vesicular systems, especially ethosomes and invasomes, compared with non-vesicular systems, can significantly improve the delivery of hydrophilic drug such as carboxyfluorescein into skin deep layers or across the skin. While in the case of mTHPC with finite and infinite dose application, most of drug accumulation was observed in the skin superficial layer for both lipid vesicular systems and non-vesicular systems. The results also revealed that the factors influencing the drug skin distribution concern the physicochemical characteristics of the drug, the choice of the vehicle formulation and the application mode applied. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available