4.3 Article

The endosomal pathway in Parkinson's disease

Journal

MOLECULAR AND CELLULAR NEUROSCIENCE
Volume 66, Issue -, Pages 21-28

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.mcn.2015.02.009

Keywords

Endosome; Lysosome; Alpha-synuclein; Ubiquitin; Parkinson's disease

Categories

Funding

  1. Wellcome Trust Intermediate Clinical Fellowship
  2. Oxford Biomedical Research Centre
  3. EPSRC

Ask authors/readers for more resources

Parkinson's disease is primarily a movement disorder with predilection for the nigral dopaminergic neurons and is often associated with widespread neurodegeneration and diffuse Lewy body deposition. Recent advances in molecular genetics and studies in model organisms have transformed our understanding of Parkinson's pathogenesis and suggested unifying biochemical pathways despite the clinical heterogeneity of the disease. In this review, we summarized the evidence that a number of Parkinson's associated genetic mutations or polymorphisms (LRRK2, VPS35, GBA, ATP13A2, ATP6AP2, DNAJC13/RME-8, RAB7L1, GAK) disrupt protein trafficking and degradation via the endosomal pathway and discussed how such defects could arise from or contribute to the accumulation and misfolding of alpha-synuclein in Lewy bodies. We propose that an age-related pathological depletion of functional endolysosomes due to neuromelanin deposition in dopaminergic neurons may increase their susceptibility to stochastic molecular defects in this pathway and we discuss how enzymes that regulate ubiquitin signaling, as exemplified by the ubiquitin ligase Nedd4, could provide the missing link between genetic and acquired defects in endosomal trafficking. This article is part of a Special Issue entitled 'Neuronal Protein'. (C) 2015 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available