4.7 Article

Increased bioavailability of a transdermal application of a nano-sized emulsion preparation

Journal

INTERNATIONAL JOURNAL OF PHARMACEUTICS
Volume 347, Issue 1-2, Pages 144-148

Publisher

ELSEVIER
DOI: 10.1016/j.ijpharm.2007.06.045

Keywords

nano-sized emulsion; transdermal; high shear processing; microfluidizer

Ask authors/readers for more resources

The aim of this study was to compare the transdermal application of a nano-sized emulsion versus a micron-sized emulsion preparation of delta tocopherol as it relates to particle size and bioavailability. Two separate experiments were performed using seven FIB Syrian Golden hamsters, I week apart. Each emulsion preparation consisted of canola oil, polysorbate 80, deionized water and delta tocopherol; the only difference between the two preparations was processing the nano-sized emulsion with the Microfluidizer (R) Processor. Both were formulated into a cream and applied to the shaven dorsal area. The particle size of the micron-sized emulsion preparation was 2788 nm compared to 65 nm for the nano-sized emulsion formulation. Two hours post-application, hamsters that were applied the nano-sized emulsion had a 36-fold significant increase of plasma delta tocopherol, where as hamsters that were applied the micron-sized emulsion only had a 9-fold significant increase, compared to baseline, respectively. At 3 h post-application, plasma delta tocopherol had significantly increased 68-fold for hamsters applied the nano-sized emulsion, whereas only an 11-fold significant increase was observed in hamsters applied the micron-sized emulsion, compared to baseline, respectively. Significant differences were also observed between the nano-sized and micron-sized emulsion at 2 and 3 h post-application. This study suggests that nano-sized emulsions significantly increase the bioavailability of transdermally applied delta tocopherol. (C) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available