4.7 Article

Isolated swine heart ventricle perfusion model for implant assisted-magnetic drug targeting

Journal

INTERNATIONAL JOURNAL OF PHARMACEUTICS
Volume 361, Issue 1-2, Pages 202-208

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ijpharm.2008.05.027

Keywords

implant assisted-magnetic drug targeting; MDT; drug delivery; drug targeting; high gradient magnetic separation; HGMS; magnetic drug carrier particles; MDCPs; in vitro; isolated organ perfusion

Funding

  1. NSF [CTS-0314157, CTS-0508391]
  2. Sloan Foundation
  3. Ford Foundation
  4. USC NanoCenter

Ask authors/readers for more resources

An isolated swine heart ventricle perfusion model was developed and used under physiologically relevant conditions to study implant assisted-magnetic drug targeting (IA-MDT). A stent coil was fabricated from a ferromagnetic SS 430 wire and used to capture 100-nm diameter magnetite particles that mimicked magnetic drug carrier particles (MDCPs). Four key cases were studied: (1) no stent and no magnet (control), (2) no magnet but with a stent, (3) no stent but with a magnet (traditional MDT), and (4) with a stent and a magnet (IA-MDT). When applied, the magnetic field was fixed at 0.125T. The performance of the system was based on the capture efficiency (CE) of the magnetite nanoparticles. The experiments done in the absence of the magnetic field showed minimal retention of any nanoparticles whether the stent was present or not. The experiments done in the presence of the magnetic field showed a statistically significant increase in the retention of the nanoparticles, with a marked difference between the traditional and IA-MDT cases. Compared to the control case, in one case there was nearly an 11-fold increase in CE for the IA-MDT case compared to only a threefold increase in CE for the traditional MDT case. This enhanced performance by the IA-MDT case was typical of all the experiments. Histology images of the cross-section of the coronary artery revealed that the nanoparticles were captured mainly in the vicinity of the stent. Overall, the IA-MDT results from this work with actual tissue were very encouraging and similar to those obtained from other non-tissue and theoretical studies; but, they did point to the need for further studies of IA-MDT (c) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available