4.3 Article

Biomechanical comparison of four different miniscrew types for skeletal anchorage in the mandibulo-maxillary area

Journal

Publisher

CHURCHILL LIVINGSTONE
DOI: 10.1016/j.ijom.2008.07.017

Keywords

miniscrew; mini-implant; skeletal anchorage; primary stability; insertion torque; pull-out resistance; bone density; maxillofacial screw; orthodontic anchorage

Ask authors/readers for more resources

This study compared four miniscrew types for skeletal anchorage (Aarhus, FAMI, Dual Top and Spider) regarding their biomechanical properties contributing to primary stability. Insertion torque measurements and pull-out tests in axial (0 degrees) as well as in the 20 degrees and 40 degrees direction were performed. Stiffness of the screw-bone construct was calculated from the load-displacement curve. Conic FAMI and Dual Top screws had higher insertion torques. Insertion torques were raised by drill-free insertion of FAMI and Dual Top screws. Statistically significant differences were found between the 4 screw types in pull-out tests. The highly significant differences between the four screws for peak load in the axial (0 degrees) and 20 degrees direction were not apparent in 40 degrees angular loads. For the conical screws, peak load values increased in angular compared with axial load. The Dual Top screw achieved the highest values for peak load and stiffness. 12 Dual Top and I Spider screw heads fractured in the pull-out tests. A conical drill-free screw design achieves higher primary stability compared with cylindrical self-tapping screws. This effect was more obvious in insertion torque estimations rather than in pull-out tests. The Dual Top screws, although biomechanically superior to other screw types, were most prone to fractures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available