4.6 Article

Differential DNA copy number aberrations in the progression of cervical lesions to invasive cervical carcinoma

Journal

INTERNATIONAL JOURNAL OF ONCOLOGY
Volume 41, Issue 6, Pages 2038-2046

Publisher

SPANDIDOS PUBL LTD
DOI: 10.3892/ijo.2012.1644

Keywords

human papillomavirus; cervical intraepithelial neoplasia; squamous cell carcinoma; array-based comparative genomic hybridization; differential DNA copy number aberration

Categories

Funding

  1. Ministry for Health, Welfare and Family affairs, Republic of Korea [0820330]
  2. Korea Health Promotion Institute [0820330] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Host genomic alterations in addition to human papillomavirus (HPV) are needed for cervical precursor lesions to progress to invasive cancer because only a small percentage of women infected by the virus develop disease. However, the genomic alterations during the progression of cervical lesions have not been systematically examined. The aim of this study was to identify differential genomic alterations among cervical intraepithelial neoplasia CIN1, CIN2, CIN3 and cervical squamous cell carcinoma (SCC). Genomic alterations were examined for 15 cases each of CIN1, CIN2, CIN3 and SCC by array-based comparative genomic hybridization (array CGH). The chromosomal regions showing significant differential in DNA copy number aberrations (DCNAs) among CIN1, CIN2, CIN3 and SCC were successfully identified by resampling-based t-test. The chromosomal regions of 5q35.3 and 2q14.3 showed significant DCNAs between CIN1 and CIN2, and between CIN2 and CIN3, respectively, while a significant difference in DCNAs between CIN3 and SCC was observed at 1q24.3, 3p14.1, 3p14.2, 5q13.2, 7p15.3, 7q22.1 and 13q32.3. In addition, the status of DCNAs in 1q43, 2p11.2, 6p11.2, 7p21.1, 7p14.3, 10q24.1, 13q22.3, 13q34 and 16p13.3 was conserved throughout the progression of CIN to SCC. The presence of differential and common DCNAs among CIN1, CIN2, CIN3 and SCC supports that the CIN progression may include continual clonal selection and evolution. This approach also identified 34 probe sets consistently overexpressed when amplified, suggesting an unbiased identification of candidate genes in SCC during cervical cancer progression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available