4.6 Article

Effects of chemical reaction on boundary layer flow past a vertical stretching surface in the presence of internal heat generation

Journal

Publisher

EMERALD GROUP PUBLISHING LTD
DOI: 10.1108/09615531111148509

Keywords

Boundary layer flow; Chemical reaction; Internal heat generation; Buoyancy forces; Stretching surface

Funding

  1. National Research Foundation of South Africa

Ask authors/readers for more resources

Purpose - The purpose of this paper is to investigate the effects of first-order homogeneous chemical reaction on a two-dimensional boundary layer flow past a vertical stretching surface in the presence of internal heat generation. Design/methodology/approach - Using the Boussinesq and boundary-layer approximations, the fluid equations for momentum, energy balance and concentration governing the problem are formulated. The governing partial differential equations are transformed using similarity transformations into a set of coupled ordinary differential equations that are solved numerically using a shooting technique and a sixth-order Runge-Kutta scheme. Findings - It was found that for positive values of the buoyancy parameters, the local skin friction and mass transfer coefficients increase with increasing Eckert and Schmidt numbers while the heat transfer coefficient decreases with both Eckert and Schmidt numbers. Both the velocity and temperature profiles increase significantly when the heat generation parameter increases. Practical implications - Continuous surface heat and mass transfer problems occur naturally in metallurgical process such as in the aerodynamic extrusion of plastic sheets, hot rolling and the cooling of metallic plates in a cooling bath. This work provides a very useful source of information for researchers on this subject. Originality/value - This paper illustrates the effects of chemical reaction on boundary layer flow past a vertical stretching surface in the presence of internal heat generation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available