4.5 Article

Identification of time-varying hysteretic structures using wavelet multiresolution analysis

Journal

INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS
Volume 45, Issue 1, Pages 21-34

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijnonlinmec.2009.08.009

Keywords

Wavelet; Multiresolution analysis; Identification; Time-varying hysteretic structures

Categories

Funding

  1. Hong Kong Research Grants Council [611405]

Ask authors/readers for more resources

In this paper, a wavelet multiresolution technique is proposed to identify time-varying properties of hysteretic structures. It is well known that arbitrary transient functions can be effectively and accurately approximated using wavelet multiresolution expansions due to wavelet's good time-frequency localization property. By decomposing the time-varying parameters with wavelet multiresolution expansion, a time-varying parametric identification problem can be transformed into a time-invariant non-parametric one. The identification in the time-invariant wavelet multiresolution domain can be achieved by choosing a wavelet basis function and performing a suitable parameter estimation technique. Since wavelet representation of arbitrary signal uses only a small number of terms, the orthogonal forward regression algorithm can be adopted for significant term selection and parameter estimation. Single and multiple degrees of freedom Bouc-Wen hysteretic structures with gradual and abrupt varying properties are used to illustrate the proposed approach. Results show that the wavelet multiresolution technique can identify and track the time-varying hysteretic parameters quite accurately. The effect of measurement noise is also studied. It is found that the presence of noise would affect more on the damping ratios and the Bouc-Wen parameters but less on the equivalent stiffness coefficients. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available