4.7 Article

Nano-zinc oxide damages spatial cognition capability via over-enhanced long-term potentiation in hippocampus of Wistar rats

Journal

INTERNATIONAL JOURNAL OF NANOMEDICINE
Volume 6, Issue -, Pages 1453-1461

Publisher

DOVE MEDICAL PRESS LTD
DOI: 10.2147/IJN.S18507

Keywords

zinc oxide nanoparticles; synaptic plasticity; long-term potentiation; depotentiation; spatial learning; memory

Funding

  1. National Natural Science Foundation of China [31070890]
  2. The UK Royal Academy of Engineering [5502]
  3. Engineering and Physical Sciences Research Council [EP/D07942X/1] Funding Source: researchfish
  4. EPSRC [EP/D07942X/1] Funding Source: UKRI

Ask authors/readers for more resources

This study focused on the effects of zinc oxide nanoparticles (nano-ZnO) on spatial learning and memory and synaptic plasticity in the hippocampus of young rats, and tried to interpret the underlying mechanism. Rats were randomly divided into four groups. Nano-ZnO and phosphate-buffered saline were administered in 4-week-old rats for 8 weeks. Subsequently, performance in Morris water maze (MWM) was determined, and then long-term potentiation (LTP) and depotentiation were measured in the perforant pathway to dentate gyrus (DG) in anesthetized rats. The data showed that, (1) in MWM, the escape latency was prolonged in the nano-ZnO group and, (2) LTP was significantly enhanced in the nano-ZnO group, while depotentiation was barely influenced in the DG region of the nano-ZnO group. This bidirectional effect on long-term synaptic plasticity broke the balance between stability and flexibility of cognition. The spatial learning and memory ability was attenuated by the alteration of synaptic plasticity in nano-ZnO-treated rats.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available