4.5 Article

Development of an algebraic-closure-based moment method for unsteady Eulerian simulations of particle-laden turbulent flows in very dilute regime

Journal

INTERNATIONAL JOURNAL OF MULTIPHASE FLOW
Volume 58, Issue -, Pages 257-278

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijmultiphaseflow.2013.10.001

Keywords

PDF method; Moment approach; Two-fluid model for DNS/LES; RUM particle kinetic stress tensor

Categories

Funding

  1. European Community through the TIMECOP-AE project [AST5-CT-2006-030828]

Ask authors/readers for more resources

An algebraic-closure-based moment method (ACBMM) is developed for unsteady Eulerian particle simulations, coupled with direct numerical simulations (DNSs) of fluid turbulent flows, in very dilute regime and up to large Stokes numbers St(K) (based on the Kolmogorov timescale) or moderate Stokes numbers St (based on the turbulent macroscale seen by the particles). The proposed method is developed in the frame of a conditional statistical approach which provides a local and instantaneous characterization of the dispersed-phase dynamic accounting for the effect of crossing between particle trajectories which becomes substantial for St(K) > 1. The computed Eulerian quantities are low-order moments of the conditional probability density function (PDF) and the corresponding governing equations are derived from the PDF kinetic equation in the general frame of the kinetic theory of gases. At the first order, the computation of the mesoscopic particle number density and velocity requires the modeling of the second-order moment tensor appearing in the particle momentum equation and referred to as random uncorrelated motion (RUM) particle kinetic stress tensor. The current work proposes a variety of different algebraic closures for the deviatoric part of the tensor. An evaluation of some effective propositions is given by performing an a priori analysis using particle Eulerian fields which are extracted from particle Lagrangian simulations coupled with DNS of a temporal particle-laden turbulent planar jet. Several million-particle simulations are analyzed in order to assess the models for various Stokes numbers. It is apparent that the most fruitful are explicit algebraic stress models (2 Phi EASM) which are based on an equilibrium assumption of RUM anisotropy for which explicit solutions are provided by means of a polynomial representation for tensor functions. These models compare very well with Eulerian-Lagrangian DNSs and properly represent all crucial trends extracted from such simulations. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available