4.5 Article

Dynamic pressure based prediction of spray cooling heat transfer coefficients

Journal

INTERNATIONAL JOURNAL OF MULTIPHASE FLOW
Volume 36, Issue 6, Pages 491-502

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijmultiphaseflow.2010.01.007

Keywords

Spray cooling; Heat transfer; Single-phase; Correlation

Categories

Funding

  1. Office of Naval Research [N000140711101]

Ask authors/readers for more resources

An important goal of spray cooling research is the ability to predict local heat transfer from the spray hydrodynamics. It is postulated that the local normal pressure exerted by the spray onto the heated surface can be used to obtain the local heat transfer coefficient. This hypothesis was tested using data obtained from hollow cone, full cone, and linear sprays at four nozzle pressures and three stand-off distances. A correlation between the pressure and heat transfer coefficient was determined from the data, then used to predict the heat transfer coefficient to verify the accuracy of the correlation. The area averaged heat transfer coefficient could be predicted within 25%, indicating that pressure can be used to predict the local heat transfer coefficient in the single-phase regime. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available