4.7 Article

Porous Polyimide Membranes Prepared by Wet Phase Inversion for Use in Low Dielectric Applications

Journal

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
Volume 14, Issue 5, Pages 8698-8707

Publisher

MDPI AG
DOI: 10.3390/ijms14058698

Keywords

low K material; porous polyimide; poly amic acid; wet phase inversion

Funding

  1. Korea Institute of Science Technology (KIST) Future Resource Research Program

Ask authors/readers for more resources

A wet phase inversion process of polyamic acid (PAA) allowed fabrication of a porous membrane of polyimide (PI) with the combination of a low dielectric constant (1.7) and reasonable mechanical properties (Tensile strain: 8.04%, toughness: 3.4 MJ/m(3), tensile stress: 39.17 MPa, and young modulus: 1.13 GPa), with further thermal imidization process of PAA. PAA was simply synthesized from purified pyromellitic dianhydride (PMDA) and 4,4-oxydianiline (ODA) in two different reaction solvents such as gamma-butyrolactone (GBL) and N-methyl-2-pyrrolidinone (NMP), which produce M-w/PDI of 630,000/1.45 and 280,000/2.0, respectively. The porous PAA membrane was fabricated by the wet phase inversion process based on a solvent/non-solvent system via tailored composition between GBL and NMP. The porosity of PI, indicative of a low electric constant, decreased with increasing concentration of GBL, which was caused by sponge-like formation. However, due to interplay between the low electric constant (structural formation) and the mechanical properties, GBL was employed for further exploration, using toluene and acetone vs. DI-water as a coagulation media. Non-solvents influenced determination of the PAA membrane size and porosity. With this approach, insight into the interplay between dielectric properties and mechanical properties will inform a wide range of potential low-k material applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available