4.7 Article

Preparation and Physicochemical Properties of Vinblastine Microparticles by Supercritical Antisolvent Process

Journal

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
Volume 13, Issue 10, Pages 12598-12607

Publisher

MDPI
DOI: 10.3390/ijms131012598

Keywords

vinblastine; supercritical antisolvent; micronization; physicochemical property; Catharanthus roseus

Funding

  1. Special Fund for Forestry Scientific Research in the Public Interest [201204601]

Ask authors/readers for more resources

The objective of the study was to prepare vinblastine microparticles by supercritical antisolvent process using N-methyl-2-pyrrolidone as solvent and carbon dioxide as antisolvent and evaluate its physicochemical properties. The effects of four process variables, pressure, temperature, drug concentration and drug solution flow rate, on drug particle formation during the supercritical antisolvent process, were investigated. Particles with a mean particle size of 121 +/- 5.3 nm were obtained under the optimized process conditions (precipitation temperature 60 degrees C, precipitation pressure 25 MPa, vinblastine concentration 2.50 mg/mL and vinblastine solution flow rate 6.7 mL/min). The vinblastine was characterized by scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, mass spectrometry and dissolution test. It was concluded that physicochemical properties of crystalline vinblastine could be improved by physical modification, such as particle size reduction and generation of amorphous state using the supercritical antisolvent process. Furthermore, the supercritical antisolvent process was a powerful methodology for improving the physicochemical properties of vinblastine.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available