4.7 Review

High Photoelectric Conversion Efficiency of Metal Phthalocyanine/Fullerene Heterojunction Photovoltaic Device

Journal

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
Volume 12, Issue 1, Pages 476-505

Publisher

MDPI
DOI: 10.3390/ijms12010476

Keywords

OPV; energy conversion efficiency; heterojunction

Funding

  1. Academia Sinica
  2. National Science Council of Taiwan [NSC 98-2221-E-002-038-MY3, NSC 99-2218-E-155-003, NSC 99-2221-E-155-092, NSC 99-2622-E-155-010-CC3, NSC 98-2221-E-011-025, NSC 98-2119-M-001-026]

Ask authors/readers for more resources

This paper introduces the fundamental physical characteristics of organic photovoltaic (OPV) devices. Photoelectric conversion efficiency is crucial to the evaluation of quality in OPV devices, and enhancing efficiency has been spurring on researchers to seek alternatives to this problem. In this paper, we focus on organic photovoltaic (OPV) devices and review several approaches to enhance the energy conversion efficiency of small molecular heterojunction OPV devices based on an optimal metal-phthalocyanine/fullerene (C-60) planar heterojunction thin film structure. For the sake of discussion, these mechanisms have been divided into electrical and optical sections: (1) Electrical: Modification on electrodes or active regions to benefit carrier injection, charge transport and exciton dissociation; (2) Optical: Optional architectures or infilling to promote photon confinement and enhance absorption.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available