4.7 Article

Geometrically nonlinear analysis of functionally graded shells

Journal

INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES
Volume 51, Issue 2, Pages 131-144

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijmecsci.2008.12.004

Keywords

Functionally graded materials; von Karman strains; Element-free; Nonlinear analysis; Shells

Ask authors/readers for more resources

The nonlinear response of functionally graded ceramic-metal shell panels under mechanical and thermal loading is studied. The nonlinear formulation is based on a modified version of Sander's nonlinear shell theory, in which the geometric nonlinearity takes the form of von Karman strains. It is assumed that the material properties vary through the thickness according to a power-law distribution of the volume fraction of the constituents. The displacement field is expressed in terms of a set of mesh-free kernel particle functions. The bending stiffness is evaluated using a stabilized conforming nodal integration technique, and the shear and membrane terms are computed using a direct nodal integration to eliminate shear and membrane locking. The arc-length method, combined with the modified Newton-Raphson approach, is employed to trace the full load-displacement path. The characteristic of the displacement and the axial stress in panels under thermal and mechanical loading is investigated, and the effects of the volume fraction exponent, boundary conditions, and material properties on the nonlinear response of shell panels are also examined. (C) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available