4.7 Article

A predictive model of the critical undeformed chip thickness for ductile-brittle transition in nano-machining of brittle materials

Journal

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ijmachtools.2012.08.005

Keywords

Ductile-mode machining; Specific cutting energy; Ultraprecision machining; Silicon machining

Ask authors/readers for more resources

There is a distinct transition in the mode of material removal in machining of brittle materials if the undeformed chip thickness is below a critical threshold of submicron scale. It is believed that at such small scale of material removal, the energy required to extend pre-existing flaws in the microstructure of brittle material exceeds the energy required to mobilize the micro-structural dislocations and hence plastic deformation serves as the dominant mode of material removal. It is postulated that a transition in the mode of material removal in machining of brittle materials is accompanied by a corresponding shift in the representative mode of energy expenditure. Hence, machining energy is a viable parameter to characterize the modes of material removal in machining of a brittle material. This paper presents a specific cutting-energy based model to predict the ductile-brittle transition point in ultra-precision machining of brittle materials. The energy expended in brittle and ductile modes of machining is modeled as a function of work-material intrinsic properties. tool geometry and process parameters. The transition point is identified in terms of undeformed chip thickness at which the mode of energy undergoes a transition from the plastic deformation based one to the fracture based one. The validity of the proposed model is verified by single-edge cutting tests on single-crystal silicon and BK7 glass. The experimental results are found in good agreement with model results. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available