4.7 Article

3D modeling of residual stresses induced in finish turning of an AISI304L stainless steel

Journal

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ijmachtools.2011.09.011

Keywords

Residual stresses; Turning; 3D numerical modeling; Surface integrity

Ask authors/readers for more resources

This paper addresses the development of a new methodology predicting residual stresses induced in finish turning of a AlSI304L stainless steel. A hybrid approach combining experimental results and a numerical model is applied. The model simulates the residual stresses generation by applying equivalent thermo-mechanical loadings onto the machined surface without modeling the chip removal process, which enables rapid calculation. The shape and the intensity of equivalent thermo-mechanical loadings are identified through experimental measurements. Friction tests enable to model the thermal and mechanical loadings along the tool-workmaterial interface. Orthogonal cutting tests provide thermal and mechanical loadings below the primary and third shear zone. This model has already been presented in several papers, but only in a 2D configuration. The objective of this paper is to transfer this hybrid approach into a 3D configuration, which is closer to a concrete longitudinal turning operation. Based on this new model, the paper aims at investigating the interactions between each revolution. It is shown that around five revolutions are necessary to reach a steady state. Finally numerical results are compared with experimental measurements obtained by X-Ray diffraction. It is shown that residual stresses cannot be considered as homogeneous over the surface due to tool's feed. Additionally, the X-Ray beam is much too large to be able to quantify this heterogeneity. Based on average numerical values coherent with average values obtained by X-Ray diffraction, it is shown that the numerical model provides consistent results compared to experimental measurements for a large range of cutting speed and feed. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available