4.7 Article

Estimation of machine-tool dynamic parameters during machining operation through operational modal analysis

Journal

INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE
Volume 49, Issue 12-13, Pages 947-957

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ijmachtools.2009.06.010

Keywords

Dynamic stability lobes; High-speed milling; Operational modal analysis; Machine tools

Ask authors/readers for more resources

The stability of high-speed machining operations determines the reliability of machine tools and the quality of machined parts. Chatter-free cutting conditions are difficult to predict as they require accurately estimated dynamic modal parameters. A spectrogram analysis and impact tests for different configurations of the machine tools were conducted to compare the modal parameters at 0 rpm tests and during machining tests. Variations of between 2% and 8% were observed for the natural frequencies and between 2 and 10 times for the damping ratios. The operational modal analysis (OMA) is considered as a powerful tool for dynamic modal parameter estimations during machining operations. A complete methodology for applying this technique for machining operations was detailed. It was demonstrate how the OMA can be industrially exploited. The proposed approach was successfully applied during the high-speed machining of the 7075-T6 aluminum alloy to extract machine-tool parameters. Two different numerical approaches were used: the autoregressive moving average method (ARMA) and the least square complex exponential method (LSCE), both of which generated similar results. The dynamic parameters found using the operational modal analysis were used to predict machine dynamic stability lobes, and through experimental validation, it was shown that some depths of cut that are stable with standard stability lobes become unstable with dynamic stability lobes. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available