4.7 Article

Machinability study of tungsten carbide using PCD tools under ultrasonic elliptical vibration cutting

Journal

INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE
Volume 49, Issue 14, Pages 1089-1095

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ijmachtools.2009.07.006

Keywords

Tungsten carbide; Machinability; Ultrasonic elliptical vibration cutting; PCD tools; Speed ratio; Surface finish

Ask authors/readers for more resources

Sintered tungsten carbide (WC) is an extremely hard and brittle material extensively used in tool manufacturing industries. However, the current cutting technologies for shaping this typical hard-to-machine material are still cost ineffective. In this study, polycrystalline diamond (PCD) tools are used to study the machinability of sintered WC (similar to 15% Co) by applying the ultrasonic elliptical vibration cutting (UEVC) technique. Firstly, it presents the UEVC principle and the effects of speed ratio (i.e. the ratio of the nominal cutting speed to the maximum tool vibration speed in the cutting direction) on the tool-workpiece relative motion as the cutting speed greatly influences the UEVC performance. Then UEVC experiments are carried out to analyze the cutting force, tool-wear progression, chip formation and surface quality against the cutting time at different speed ratios. The results show that when the speed ratio decreases, the resultant cutting force and the tool flank wear decrease while the surface finish improves. Average surface roughness, R-a, in a range between 0.030 and 0.050 mu m is achieved at speed ratios less than 0.107. The experimental findings suggest that the commercial PCD tools can be used to machine sintered WC to achieve ultraprecision surface by applying the UEVC technique, which will be cost effective for miniature cutting technologies in future. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available