4.4 Article

Application of three independent consequential LCA approaches to the agricultural sector in Luxembourg

Journal

INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT
Volume 18, Issue 8, Pages 1593-1604

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11367-013-0604-2

Keywords

Agriculture; Consequential LCA; Expert opinion; Land use changes; Partial equilibrium model; Scenario modelling

Funding

  1. National Research Fund (FNR) in the frame of the LUCAS project

Ask authors/readers for more resources

Consequential Life Cycle Assessment (C-LCA) is a system modelling approach in which activities in a product system are linked so that activities are included in the product system to the extent that they are expected to change as a consequence of a change in demand. Hence, C-LCA focuses on micro-economic actions linked to macro-economic consequences, by identifying the (marginal) suppliers and technologies prone to be affected by variable scale changes in the demand of a product. Detecting the direct and indirect environmental effects due to changes in the production system is not an easy task. Hence, researchers have combined the consequential perspective with different econometric models. Therefore, the aim of this study is to assess an increase in biocrops cultivation in Luxembourg using three different consequential modelling approaches to understand the benefits, drawbacks and assumptions linked to each approach as applied to the case study selected. Firstly, a partial equilibrium (PE) model is used to detect changes in land cultivation based on the farmers' revenue maximisation. Secondly, another PE model is proposed, which considers a different perspective aiming at minimising a total adaptation cost (so-called opportunity cost) to satisfy a given new demand of domestically produced biofuel. Finally, the consequential system delimitation for agricultural LCA approach, as proposed by Schmidt (Int J Life Cycle Assess 13:350-364, 2008), is applied. The two PE models present complex shifts in crop rotation land use changes (LUCs), linked to the optimisation that is performed, while the remaining approach has limited consequential impact on changes in crop patterns since the expert opinion decision tree constitutes a simplification of the ongoing LUCs. However, environmental consequences in the latter were considerably higher due to intercontinental trade assumptions recommended by the experts that were not accounted for in the economic models. Environmental variations between the different scenarios due to LUCs vary based on the different expert- or computational-based assumptions. Finally, environmental consequences as compared with the current state-of-the-art are lame due to the limited impact of the shock within the global trade market. The use of several consequential modelling approaches within the same study may help widen the interpretation of the advantages or risks of applying a specific change to a production system. In fact, different models may not only be good alternatives in terms of comparability of scenarios and assumptions, but there may also be room for complementing these within a unique framework to reduce uncertainties in an integrated way.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available