4.4 Review

Magnetic fluid hyperthermia: Advances, challenges, and opportunity

Journal

INTERNATIONAL JOURNAL OF HYPERTHERMIA
Volume 29, Issue 8, Pages 706-714

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.3109/02656736.2013.837200

Keywords

Eddy current heating; local energy delivery; magnetic nanoparticles; magnetically mediated energy delivery; nanoscale thermal effects; specific absorption rate; systemic delivery

Ask authors/readers for more resources

Though the concepts of magnetic fluid hyperthermia (MFH) were originally proposed over 50 years ago, the technique has yet to be successfully translated into routine clinical application. Significant challenges must be addressed if the field is to progress and realise its potential as an option for treatment of diseases such as cancer. These challenges include determining the optimum fields and frequencies that maximise the effectiveness of MFH without significant detrimental off-target effects on healthy tissue, achieving sufficient concentrations of magnetic nanoparticles (MNPs) within the target tumour, and developing a better mechanistic understanding of MNP-mediated energy deposition and its effects on cells and tissue. On the other hand, emerging experimental evidence indicates that local thermal effects indeed occur in the vicinity of energy-dissipating MNPs. These findings point to the opportunity of engineering MNPs for the selective destruction of cells and/or intracellular structures without the need for a macroscopic tissue temperature rise, in what we here call magnetically mediated energy delivery (MagMED).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available