4.4 Article

Enhancement in treatment planning for magnetic nanoparticle hyperthermia: Optimization of the heat absorption pattern

Journal

INTERNATIONAL JOURNAL OF HYPERTHERMIA
Volume 25, Issue 4, Pages 309-321

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/02656730902803118

Keywords

Nanoparticle hyperthermia; optimization; temperature; injection site; SAR; tumor; cancer treatment

Funding

  1. NSF [CBET-0730732, CBET-0828728]

Ask authors/readers for more resources

In clinical applications of magnetic nanoparticle hyperthermia for cancer treatment it is very important to ensure a maximum damage to the tumor while protecting the normal tissue. The resultant heating pattern by the nanoparticle distribution in tumor is closely related to the injection parameters. In this study we develop an optimization algorithm to inversely determine the optimum heating patterns induced by multiple nanoparticle injections in tumor models with irregular geometries. The injection site locations, thermal properties of tumor and tissue, and local blood perfusion rates are used as inputs to the algorithm to determine the optimum parameters of the heat sources for all nanoparticle injection sites. The design objective is to elevate the temperature of at least 90% of the tumor above 43 degrees C, and to ensure only less than 10% of the normal tissue is heated to temperatures of 43 degrees C or higher. The efficiency, flexibility and capability of this approach have been demonstrated in a case study of two tumors with simple or complicated geometry. An extensive experimental database should be developed in the future to relate the optimized heating pattern parameters found in this study to their appropriate nanoparticle concentration, injection amount, and injection rate. We believe that the optimization algorithm developed in this study can be used as a guideline for physicians to design an optimal treatment plan in magnetic nanoparticle hyperthermia.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available