4.7 Article

Magnetic metal phosphide nanorods as effective hydrogen-evolution electrocatalysts

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 39, Issue 33, Pages 18919-18928

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2014.09.104

Keywords

Nickel phosphide; Cobalt phosphide; Nanorods; Hydrogen evolution; HER; Electrolysis

Funding

  1. National Basic Research Program of China [2012CB933103]
  2. National Natural Science Foundation of China [51171157, 51171158, 51371154]
  3. Program of China Scholarships Council [201206315023]

Ask authors/readers for more resources

Efficient and economical hydrogen evolution reaction (HER) from water splitting holds a bright prospect for clean energy. Replacement of expensive Pt-based catalysts with earth-abundant catalysts is beneficial for this field. In this study, nanoscale magnetic metal phosphides including CO2P, Co1.33Ni0.67P and Ni2P nanorods are synthesized by a facile solution method. Their HER activities and stabilities on glassy carbon and Ti electrodes are investigated. The CO2P nanorods deposited on glassy carbon electrodes are found to show higher activity and better reversibility than the Co1.33Ni0.67P and Ni2P counterparts. Nevertheless, the Co1.33Ni0.67P and Ni2P samples on Ti electrodes gain a significant activity promotion after annealing in H-2/Ar atmosphere. Investigation of the Tafel curves shows that the CO2P nanorods on glassy carbon have the lowest Tafel slope while their exchange current density on Ti electrode exhibits a high value which is comparable to that of Pt electrode. Furthermore, the cyclic voltammetric tests show that the reversibility of annealed CO2P on Ti electrode is the best, which emphasizes the superiority of Co species in catalyzing HER reaction. Finally, the three magnetic metal phosphide catalysts are found to exhibit good stabilities in acidic conditions according to the galvanostatic testing results. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available