4.7 Article

WO3/BiVO4 composite photoelectrode prepared by improved auto-combustion method for highly efficient water splitting

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 39, Issue 6, Pages 2454-2461

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2013.08.114

Keywords

Visible-light responsive metal oxide; Hydrogen; Applied bias photon-to-current efficiency; Tungsten trioxide; Bismuth vanadate

Funding

  1. Cabinet Office, Government of Japan

Ask authors/readers for more resources

We report on the improvement in the water splitting efficiency of a WO3/BiVO4 composite photoelectrode by the application of an improved auto-combustion method to the preparation of porous BiVO4 thin films. The unique feature of this preparation method is the addition of both NH4NO3, as a strong oxidizing agent, and an organic additive into BiVO4 precursor solution. The local decomposition heat of the organic additive and oxidizing agent created a porous film with small, highly crystalline BiVO4 particles. The photoelectrode has many advantages over existing ones, such as the high light-harvesting efficiency (LHE), a single BiVO4 phase, the facile access of the holes to the photoelectrode/electrolyte interface, and the ease of water and oxygen diffusion. The maximum incident photon-to-current efficiency (IPCE) was estimated to be 64% (at 440 nm, 1.23 V vs. RHE) and the applied bias photon-tocurrent efficiency (ABPE) reached as high as 1.28%. This ABPE value is highest among all oxide semiconductor photoelectrodes reported previously, except for the case of a stacking photoelectrode system. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available