4.7 Article

Auto-ignition and DDT driven by shock wave - Boundary layer interaction in oxyhydrogen mixture

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 38, Issue 10, Pages 4185-4193

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2013.01.111

Keywords

Shock wave - boundary layer interaction; DDT; Fast flame; Auto-ignition

Ask authors/readers for more resources

Detonation research started just at the beginning of 1880s, but its generation mechanism is still a mystery and has not been explained in details yet. Many experimental research in the early 1900s reported that detonation is generated by a transition from deflagration, later known as deflagration-to-detonation transition (DDT). A high performance laser allowing to see a detailed phenomenon was developed later. However, even with nowadays experimental techniques a detailed view on detonation initiation cannot be provided. The present work shows for the first time in details that shock wave - boundary layer interactions are the key for an auto-ignition in the boundary layer in a smooth tube. From that process of the auto-ignition a new flame is developed and propagate along the wall with a sound speed, turns into a fast flame, and trigger DDT finally. The most important factors for the process of the auto-ignition in the boundary layer are thermodynamic interactions in the boundary layer and the induction time. Copyright (c) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available