4.7 Article

Hydrogen-oxygen flame acceleration and deflagration-to-detonation transition in three-dimensional rectangular channels with no-slip walls

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 38, Issue 36, Pages 16427-16440

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2013.08.124

Keywords

Hydrogen/oxygen; flame acceleration; DDT; Shock wave; 3D modeling; Detailed chemistry; Detonation

Funding

  1. Russian Ministry of Science and Education [1.5/XX, 8648]

Ask authors/readers for more resources

Hydrogen-oxygen flame acceleration and the transition from deflagration to detonation (DDT) in channels with no-slip walls are studied using high resolution simulations of 3D reactive Navier-Stokes equations, including the effects of viscosity, thermal conduction, molecular diffusion, real equation of state and detailed (reduced) chemical reaction mechanism. The acceleration of the flame propagating from the closed end of a channel, which is a key factor for understanding of the mechanism of DDT, is thoroughly studied. The three dimensional modeling of the flame acceleration and DDT in a semi-closed rectangular channel with cross section 10 x 10 mm and length 250 mm confirms validity of the mechanism of deflagration-to-detonation transition, which was proposed earlier theoretically and verified using 2D simulations. We show that 3D model contrary to 2D models allows to understand clearly the meaning of schlieren photos obtained in experimental studies. The numerical schlieren and numerical shadowgraph obtained using 3D calculations clarify the meaning of the experimental schlieren and shadow photos and some earlier misinterpretations of experimental data. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available