4.7 Article

Functionalization of TiO2 nanotubes with palladium nanoparticles for hydrogen sorption and storage

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 38, Issue 32, Pages 14002-14009

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2013.08.055

Keywords

Hydrogen storage; Palladium nanoparticles; TiO2 nanotubes; Electrochemical anodization; Photo-assisted deposition

Funding

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. NSERC
  3. Canada Foundation of Innovation (CFI)

Ask authors/readers for more resources

The use of hydrogen as an energy carrier is an attractive solution toward addressing global energy issues and reducing the effects of climate change. Design of new materials with high hydrogen sorption capacity and high stability is critical for hydrogen purification and storage. In this study, titanium dioxide nanotubes (TiO2NTs) were modified with palladium nanoparticles (PdNPs) utilizing a facile photo-assisted chemical deposition approach. Electrochemical anodization was employed for the direct growth of TiO2NTs. The PdNP functionalized TiO2NTs (TiO2NT/Pd) were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The hydrogen sorption behaviours and stability of the TiO2NT/Pd nanocomposites were investigated and compared with nanoporous Pd networks that were deposited on a bulk titanium substrate (Ti/Pd) using cyclic voltammetry (CV) and chronoamperometry (CA). Our studies show that the TiO2NT/Pd nanocomposites possess a much higher hydrogen storage capacity, faster kinetics for hydrogen sorption and desorption, and higher stability than the nanoporous Pd. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available